
A Base Class to Simulate Differentiated Services
Lucas Palmer

University of San Francisco

ABSTRACT
Differentiated services is a class of service model for specify-
ing and controlling IP network traffic by class. Packets that
pass through a network device, such as a router, have their
relative priority differentiated from one another. A base class
will be used to hold the shared structure amongst differenti-
ated services, while subclasses can implement different QoS
algorithms.

1 DESIGN
The DiffServ class is a subclass of ns3::Queue<ns3::Packet>.
The functions Enqueue(), Dequeue(), Remove(), and Peek()
are overridden as private in the DiffServ class. These func-
tions are left to the ns3 framework that utilizes the queue
as a ns3::Queue<ns3::Packet>. Instead, DiffServ has three
public pure virtual functions that each QoS base class must
override: Schedule(), ScheduleConst(), and Classify().

The project UML diagram is used as is with the following
modifications:
1. The DiffServ q_class member is protected so that sub-

class QoS implementations can enqueue and dequeue packets
in each traffic class.
2. The DiffServ Classify() method returns a boolean that

indicates whether a packet was enqueued into a traffic class.
3. The public method ScheduleConst() is added to DiffServ

to obtain the next scheduled packet without any modifica-
tions to underlying traffic classes or QoS implementation
state.

4. Include Peek(), Empty(), GetWeight(), GetPriority(), and
IsDefault() public methods in the TrafficClass class, so that
QoS implementations can enqueue and dequeue packets.
5. Combine SourceIpAddress and SourceMask filter ele-

ments into one filter, since a mask equality check requires
a corresponding address. When only an IP address is pro-
vided, the all-ones mask can be used by default. Same with
DestinationIpAddress and DestinationMask.
6. In each aggregation relationship between classes, use

std::unique_ptr in the aggregate (parent) class to maintain
ownership over the assembly (child) class.

The constructor of each aggregate class will take an XML
node as an argument. Attributes of the aggregate class will
be stored in XML node attributes, whereas the configura-
tion of each assembly class will be in child XML nodes. It is
the aggregate class’ responsibility to iterate over child XML
nodes and pass these XML configurations to the constructor
of the right assembly class.

If a QoS implementation needs to maintain state in be-
tween calls to Schedule (e.g., DRR), the QoS subclass of Diff-
Serv is responsible for maintaining such state with any re-
quired invariants.

2 DESIGN CHALLENGES
Constructors were designed to take XML nodes as arguments
because the aggregate relationships between classes are anal-
ogous to an XML node hierarchy. It was desired for each class
to own its own XML attribute/node parsing, so that a single
XML configuration could be passed to the higher aggregate
class (DiffServ) and propagate down to each assembly class.
Although this worked as intended, input validation became a
challenge. What if the XML configuration passed into a con-
structor does not have the required attributes or child nodes?
In future work, an exception should be thrown if input is
invalid. Otherwise, it is easy to misconfigure something like
a traffic class (e.g., with a weight of 0 in deficit round robin).

Some QoS algorithms do not need to be stateful in between
calls to Schedule(). For example, each call to SPQ is the same
regardless of what packet was previous sent. Schedule() can
just find the highest priority packet available to send. How-
ever, other QoS algorithms do need to be stateful in between
calls to Schedule(). One such algorithm is DRR as described in
http://cs621.cs.usfca.edu/v/resources/drr.pdf. The algorithm
here is to iterate over each traffic class, allocating additional
bytes to the traffic class each round and attempting to send a
packet if allowed. This means that a subsequent call to Sched-
ule() must know which traffic class is under consideration
next. Should this state be stored in the QoS implementation
subclass of DiffServ, or in the TrafficClass class? The former
would mean that the QoS implementation is owning and
maintaining metadata for each TrafficClass, whereas the lat-
ter would mean that TrafficClass further diverges from the
more general definition in the project specification. Main-
taining state in the QoS implementation subclass of DiffServ
gives rise to several invariants for the lifetime of the class
(e.g., the list of active traffic classes must have non-empty
queues). In future work, such invariants should be better
documented and violations should throw exceptions.

3 IMPLEMENTATION DETAILS
3.1 Queue Configuration
Queue configuration is stored in XML. An example configu-
ration for SPQ is the following:

1



Project 2 Report, 2023 Lucas Palmer

<?xml version="1.0" encoding="UTF-8"?>
<spq_config>

<traffic_class priority_level="9">
<filter>
<filter_element>
<source_ip ip="10.1.1.1"></source_ip>

</filter_element>
<filter_element>
<dest_port port="9"></dest_port>

</filter_element>
</filter>

</traffic_class>
<traffic_class priority_level="10">

<filter>
<filter_element>
<source_ip ip="10.1.1.1"></source_ip>

</filter_element>
<filter_element>
<dest_port port="10"></dest_port>

</filter_element>
</filter>

</traffic_class>
</spq_config>

This means that there are two traffic classes with priority
9 and 10. The traffic class with priority 9 is for traffic from
source IP 10.1.1.1 to destination port 9. The traffic class with
priority 10 is for traffic from source IP 10.1.1.1 to destination
port 10. An example configuration for DRR is the following:

<?xml version="1.0" encoding="UTF-8"?>
<drr_config>

<traffic_class weight="1">
<filter>
<filter_element>
<source_ip ip="10.1.1.1"></source_ip>

</filter_element>
<filter_element>
<dest_port port="9"></dest_port>

</filter_element>
</filter>

</traffic_class>
<traffic_class weight="2">

<filter>
<filter_element>
<source_ip ip="10.1.1.1"></source_ip>

</filter_element>
<filter_element>
<dest_port port="10"></dest_port>

</filter_element>
</filter>

</traffic_class>
<traffic_class weight="3">

<filter>
<filter_element>

<source_ip ip="10.1.1.1"></source_ip>
</filter_element>
<filter_element>

<dest_port port="11"></dest_port>
</filter_element>

</filter>
</traffic_class>

</drr_config>

This means that there are three traffic classes with weight
1, 2, and 3. The traffic class with weight 1 is for traffic from
source IP 10.1.1.1 to destination port 9. The traffic class with
weight 2 is for traffic from source IP 10.1.1.1 to destination
port 10. The traffic class with weight 3 is for traffic from
source IP 10.1.1.1 to destination port 11.

3.2 Strict Priority Queueing
SPQ does not need to maintain state in between calls to
Schedule(). On a call to Schedule(), the highest priority packet
is sent regardless of what packet was previously sent. The
implementation of SPQ in a QoS subclass of DiffServ is rela-
tively simple. In the constructor of the subclass when traffic
classes are added from an XML configuration, sort the traffic
classes in decreasing order of priority. Schedule() will then
iterate through the list of traffic classes and return the first
packet it finds.

3.3 Deficit Round Robin
DRR does need to maintain state in between calls to Sched-
ule(). Introduce the following members to the QoS subclass
of DiffServ:
struct ActiveTrafficClass
{

TrafficClass* traffic_class;
double_t deficit_counter;

};

private:
std::queue<ActiveTrafficClass> active_list_;
std::unordered_set<TrafficClass*> active_set_;

The queue is to maintain the order of active traffic classes
with their corresponding deficit counters. The unordered set
is for fast lookup of whether or not a traffic class is in the
active list.
In DeficitRoundRobin::Classify(), check for a matching

traffic class and enqueue accordingly. In addition, add the
traffic class to the back of the active list queue with a deficit
counter of 0 only if it is not already in the queue.
In DeficitRoundRobin::Schedule(), start with looking at

the traffic class at the front of the active list queue (this
2



A Base Class to Simulate Differentiated Services Project 2 Report, 2023

traffic class should be non-empty if the active list invariant
is properly maintained). Do not pop this traffic class out of
the queue yet, as it is possible that this class will stay at the
head of the queue for the next call to Schedule(). Follow DRR
by adding a quantum to the deficit counter. If there are not
enough bytes in the deficit counter to send the next packet,
push the traffic class to the back of the active list queue. If
there are enough bytes in the deficit counter to send the next
packet, this is the packet that will be returned on this call
to Schedule() and the deficit counter is decremented by the
number of bytes in the packet. However, we can not just
push this traffic class to the back of the queue for the next
call to Schedule(). If the deficit counter is still enough to also
send the next packet in the same traffic class, keep the head
of the active list queue the same. One subtlety is that, if we
leave a traffic class at the head of the active list queue, we don’t
want to add another quantum to the deficit counter on the next
call to Schedule(). For simplicity in this implementation, just
subtract a quantum from the deficit counter prior to returning
a packet so that adding a quantum on the next call is negated.

4 SIMULATIONS
4.1 Strict Priority Queueing
To validate SPQ, configure a 3 node topology (client, router,
server) with point-to-point connections client->router and
router->server. Set the data rate of client->router to 40Mbps
and the data rate of router->server to 10Mbps (to create a
bottleneck). Add the custom queue implementation to the
router net device on the router->server point-to-point con-
nection (use the XML configuration included in section 3.1).
Configure two bulk UDP applications to send a stream of
UDP packets from the client node to ports 9 and 10 on the
server node. For this demonstration, we want to show the
higher priority traffic to port 10 exhausting the bottleneck.
One bulk UDP application is configured to send 10Mbps
of traffic to port 9 from time 1.0 to time 39.0. The second
bulk UDP application is configured to send 10Mbps of traffic
to port 10 from time 10.0 to time 30.0. Note that 10Mbps =
1250000 bytes/second so the applications send 1250 byte packets
at a rate of 1000 times per second.

Halve the rate of sending packets, and the bottleneck is
big enough for all traffic to get through.

4.2 Deficit Round Robin
To validate DRR, configure a 3 node topology (client, router,
server) with point-to-point connections client->router and
router->server. Set the data rate of client->router to 40Mbps
and the data rate of router->server to 10Mbps (to create a
bottleneck). Add the custom queue implementation to the
router net device on the router->server point-to-point con-
nection (use the XML configuration included in section 3.1).
Configure three bulk UDP applications to send a stream of
UDP packets from the client node to ports 9, 10, and 11 on
the server node. For this demonstration, we want to show
the the ratio of traffic when no traffic class can get transmit-
ted entirely. One bulk UDP application is configured to send
10Mbps of traffic to port 9 from time 1.0 to time 39.0. The
second bulk UDP application is configured to send 10Mbps
of traffic to port 10 from time 1.0 to time 39.0. The third bulk
UDP application is configured to send 10Mbps of traffic to
port 11 from time 1.0 to time 39.0. Note that 10Mbps = 1250000
bytes/second so the applications send 1250 byte packets at a
rate of 1000 times per second.

3



Project 2 Report, 2023 Lucas Palmer

Changing the quantum values from 1:2:3 to 1:2:7 shows
the same ratio in packets.

5 API USAGE
The constructors of the queue subclasses take a const refer-
ence to rapidxml::xml_node<>. In order to use these classes,

parse an XML config in the expected format (see 3.1) using
rapidxml and pass the result to the constructor.

std::string config_file = "myfile.xml";
rapidxml::file<> xmlFile(config_file.c_str());
rapidxml::xml_document<> doc;
doc.parse<0>(xmlFile.data());

xml_node<>* spq = doc.first_node("spq_config");
if (spq != nullptr)
{

StrictPriorityQueueing queue(*spq);
}

xml_node<>* drr = doc.first_node("drr_config");
if (drr != nullptr)
{

DeficitRoundRobin queue(*drr);
}

6 ALTERNATIVE DESIGN
The current design is quite rigid in that all configuration is
done in constructors. It would be useful to provide a default
constructor with a public interface for updating traffic classes
dynamically.

7 REFERENCES
Rapidxml (https://rapidxml.sourceforge.net/) was used as
an XML parser in this project. DRR was implemented as
described in http://cs621.cs.usfca.edu/v/resources/drr.pdf.

4


	Abstract
	1 Design
	2 Design Challenges
	3 Implementation Details
	3.1 Queue Configuration
	3.2 Strict Priority Queueing
	3.3 Deficit Round Robin

	4 Simulations
	4.1 Strict Priority Queueing
	4.2 Deficit Round Robin

	5 API Usage
	6 Alternative Design
	7 References

